
LONGITUDINAL STUDY TO ASSESS THE PREDICTIVE VALUE OF DTI PARAMETERS IN RRMS PATIENTS

E. Graulières, J-A. Lotterie, E. Cassol, A. Gerdelat, M. Clanet, I. Berry

MIAMS NEW-YORK - 2008

INTRODUCTION

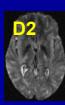
- The contraction of the contracti
 - → lesions in the central nervous system (CNS)

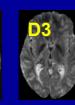
- Torrelations between lesion load (LL) and EDSS weak
- Non-conventional MRI techniques: pathological process in NAWM and GM
- Tiffusion tensor imaging (DTI): sensitive in detecting occult MS-related brain abnormalities
- No marker monitor or predict progression of MS
- Aim: potential of quantitative DTI parameters and LL to predict

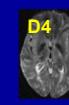
MULTIPLE SCLEROSIS AND DTI

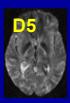
1. DTI

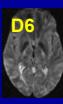
- Microscopic random motion of water molecules:
 - → Brownian motion

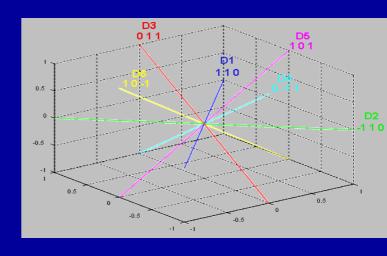



- The Diffusion is not the same in all directions: WM tracts
 - → Anisotropy


$$\mathbf{D} = \begin{pmatrix} \mathbf{D}\mathbf{x}\mathbf{x} & \mathbf{D}\mathbf{x}\mathbf{y} & \mathbf{D}\mathbf{x}\mathbf{z} \\ \mathbf{D}\mathbf{y}\mathbf{x} & \mathbf{D}\mathbf{y}\mathbf{y} & \mathbf{D}\mathbf{y}\mathbf{z} \\ \mathbf{D}\mathbf{z}\mathbf{x} & \mathbf{D}\mathbf{z}\mathbf{y} & \mathbf{D}\mathbf{z}\mathbf{z} \end{pmatrix}$$

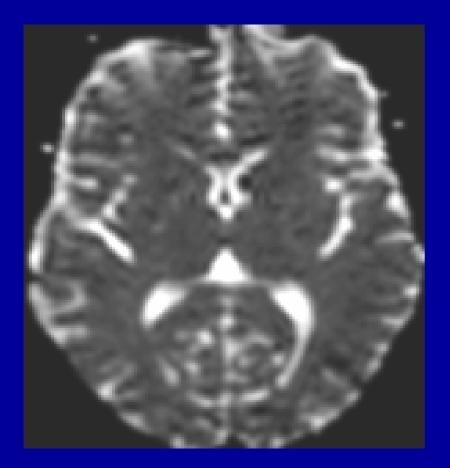






$$g_1$$
=(1 0 -1) g_2 =(1 -1 0) g_3 =(0 -1 1)

 $g_4 = (1\ 0\ 1)$ $g_5 = (1\ 1\ 0)$ $g_6 = (0\ 1\ 1)$


 \bigcirc 6 weighted diffusion images in 6 \neq directions of gradient + 1 non weighted diffusion image

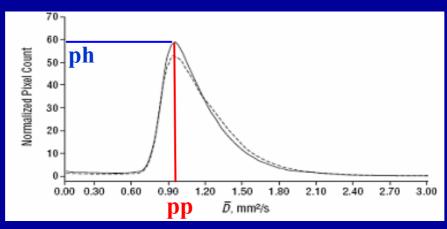
$$\begin{pmatrix} \mathbf{D}\mathbf{x}\mathbf{x} & \mathbf{D}\mathbf{x}\mathbf{y} & \mathbf{D}\mathbf{x}\mathbf{z} \\ \mathbf{D}\mathbf{y}\mathbf{x} & \mathbf{D}\mathbf{y}\mathbf{y} & \mathbf{D}\mathbf{y}\mathbf{z} \\ \mathbf{D}\mathbf{z}\mathbf{x} & \mathbf{D}\mathbf{z}\mathbf{y} & \mathbf{D}\mathbf{z}\mathbf{z} \end{pmatrix} \xrightarrow{\text{Diagonalisation}} \begin{pmatrix} \lambda\mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \lambda\mathbf{2} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \lambda\mathbf{3} \end{pmatrix}$$

V1, V2, V3: eigen vectors associated with the main diffusion directions

 λ 1, λ 2, λ 3: eigen values associated with eigen vectors

Maps

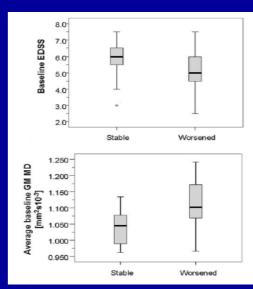
Mean diffusivity (MD)


$$DM = (\lambda 1 + \lambda 2 + \lambda 3)/3$$

Fractional anisotropy (FA)

FA =
$$\frac{1}{\sqrt{2}} \frac{\sqrt{(\lambda 1 - \lambda 2)^2 + (\lambda 2 - \lambda 3)^2 + (\lambda 1 - \lambda 3)^2}}{\sqrt{(\lambda 1^2 + \lambda 2^2 + \lambda 3^2)}}$$

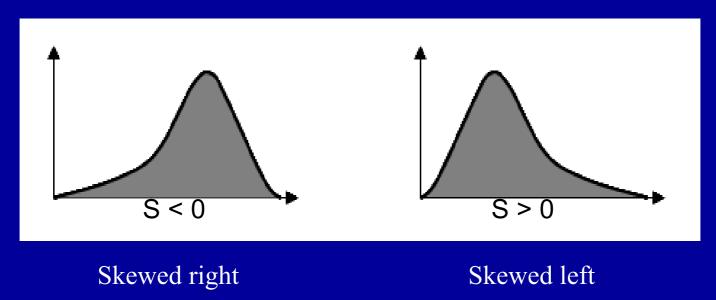
FA from 0 to 1


2. DTI in multiple sclerosis

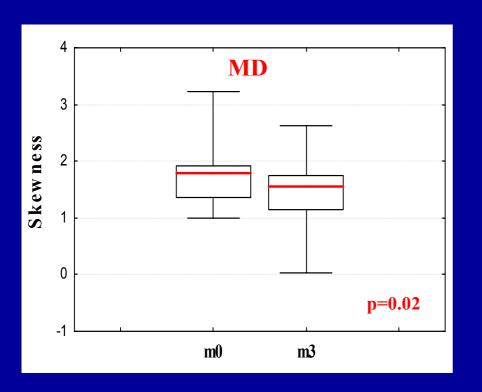
(Oreja-Guevara, Arch Neurol, 2005)

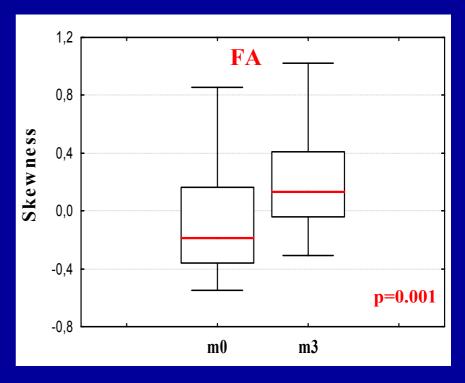
MD and FA in NAWM and GM compared with healthy subjects

Association abnormal MD values with disease progression (Rovaris et al., 2006)



Previous DTI study over 3 months on a group of RRMS patients


(Graulieres E., Lotterie J.A., Cassol E., Gerdelat A., Clanet M., Berry I. Relevance of the Skewness index in DTI exploration of multiple sclerosis. Magma. submitted)


- → Skewness (S) to describe MD and FA histograms in NAWM and **GM**
 - → more reliable than pp and ph

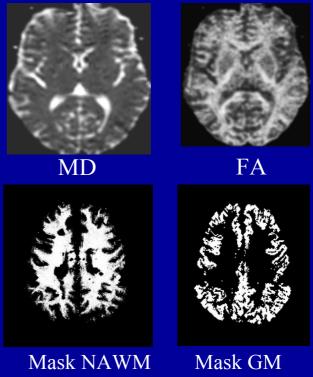
Measure of the lack of symmetry

No clinical evolution over 3 months but S in GM for both histograms showed significant change towards abnormal values

- S may be an alternative parameter to monitor disease evolution compared to EDSS
- → Objective: DTI parameters and LL have potential to predict the course of RRMS patients?

MATERIALS AND METHODS

Patients


- 3 13 RRMS patients: 2 examinations within 3 months (m0 and m3)
- Clinical evaluation (EDSS score) and cMRI and DTI
- 7 years (y7): clinical evaluation

The MRI acquisition and post processing

- MRI 1.5 T
- TI: 6 non collinear directions of gradient (b=506 s.mm⁻²) ("single shot" echo planar)
- T₂ weighted images (WI)

- T_2 images: calculation of LL with semi-automated process (AnalyseTM, Biomedical Imaging Reource, Mayo Foundation, CNSoftware Ltd, UK)
- Correction of eddy currents distorsion (coregistration of diffusion weighted images on the diffusion un-weighted image)
- Calculation of the tensor and MD and FA values voxel by voxel (Sisyphe, Dr Lotterie J-A, Université Paul Sabatier, Toulouse)

Masks NAWM and GM (SPM2, K. Friston, University College London, UK)

Apply to MD and FA maps: histograms of MD and FA

- For each patient, at m0 and m3, from each MD and FA histogram:
 - Skewness
 - pp
 - ph
- For each patient, at m0, m3 and y7: EDSS
- → whole group of patients
- → 2 groups according to change in EDSS over 7 years (<2 and ≥2)

Tatistical analysis

- Spearman rank: correlations between change in DTI parameters and LL over 3 months and change in EDSS over 7 years
- ② 2 tailed t-test power and sample size calculation
- The Student t test: change over 3 months ≠ between the 2 groups

RESULTS

Tor the whole group of patients

		r	p	Power	N
Lesion load		0.09	0.78	0.06	>1000
NAWM MD	S	-0.22	0.47	0.11	213
	pp	0.13	0.68	0.07	617
	ph	0.0008	0.99	0.05	*
NAWM FA	S	-0.15	0.62	0.07	462
	pp	0.19	0.53	0.09	287
	ph	0.22	0.47	0.11	213
GM MD	S	-0.06	0.84	0.05	>1000
	pp	0.15	0.63	0.07	462
	ph	-0.03	0.93	0.05	>1000
GM FA	S	-0.22	0.48	0.11	213
	pp	0.22	0.48	0.11	213
	ph	-0.55	0.05	0.53	30

For the 2 groups of patients (EDSS <2 and ≥2)

		p
Lesion load		0.44
NAWM MD	\mathbf{S}	0.82
	pp	0.1
	ph	0.66
NAWM FA	\mathbf{S}	0.64
	pp	0.1
	ph	1
GM MD	\mathbf{S}	0.18
	pp	0.22
	ph	0.19
GM FA	\mathbf{S}	0.42
	pp	0.33
	ph	0.86

p values: change in DTI parameters and LL over 3 months ≠?

DISCUSSION

- TI based studies: role of NAWM and GM
- No prediction of the evolution of the pathology
- → long term follow-up of RRMS patients to test DTI parameters (S) and LL
- No correlation except for ph from FA histograms in GM
- No ≠ in change of DTI parameters or LL between the 2 groups (moderate and more pronounced)

→ <u>limitations</u>

Clinical considerations

- Therapy: role in ≠ evolution of clinical score
- Not enough subjects

Methodological considerations

- Power of correlations inadequate (power<0.9) and sample size larger
- Timitation of DTI sequences:
 - image distorsions
 - patient motion artifact
 - signal to noise ratio
 - partial volume errors during segmentation

Results show S or another parameter cannot predict evolution of MS

Timproved DTI sequences: more stable measures

→ Further studies with larger sample size and improved

DTI sequences

Thank you for your attention

graulieres@hotmail.com