

Combining Robust Expectation Maximization and Mean Shift Algorithms for Multiple Sclerosis Brain Segmentation

D. Garcia-Lorenzo^{1 2 3} S. Prima^{1 2 3} D.L. Collins⁴ D.L. Arnold⁴ S.P. Morrissey^{1 2 3 5} C. Barillot^{1 2 3}

- 1 INRIA, VisAGeS Unit/Project, IRISA, Rennes, France
- 2 University of Rennes I, CNRS IRISA, Rennes, France
- 3 INSERM, U746 Unit/Project, IRISA, Rennes, France
- 4 Montreal Neurological Institute and Hospital, McConnel Brain Imaging Centre, Montreal, Canada
- 5 Department of Neurology, University Hospital Pontchaillou, Rennes, France

Introduction

Validation

Introduction

•Global methods Use of the whole image information **Expectation**-**Maximization** (EM) Limit: little or none spatial information employed

Local methods Use of local information to create regions Mean Shift (MeS) Challenge: How to merge regions to obtain the final segmentation

Mean Shift (MeS)

Robust Expectation Maximization (REM)

Mean Shift

Non-parametric technique for probability density gradient estimation

$$m_{b,g}(x) = \frac{\sum_{i=1}^{n} x_i g\left(\left|\left|\frac{x-x_i}{b}\right|\right|^2\right)}{\sum_{i=1}^{n} g\left(\left|\left|\frac{x-x_i}{b}\right|\right|^2\right)} - x$$

d = dimension b = bandwidth k(x) = kernel profile g(x)= -k'(x) n = number of pixels

m_{b,g}

• A point x will arrive always to a point with $m_{b,g} \approx 0$, called mode. All points arriving to the same mode m will form a region. x^2 x^1 x^0

xmode

Mean Shift for 3D images

Clustering technique
d = m (number of MR sequences)
Joint spatial-intensity domain
d = m + 3 (spatial dimensions)
Integration of spatial information

$$K_{b_s,b_r}(x) = K\left(\frac{x^s}{b_s}\right)K\left(\frac{x^r}{b_r}\right)$$

Robust Expectation-Maximization

3-class Finite Multivariate Gaussian Mixture Model

Modified Expectation-Maximization algorithm (mEM)

Trimmed Likelihood (Neikov et Al. 2006)

$$TL = \sum_{i=1}^{n-h} f(x_{\nu(i)}; \Theta)$$

Ordering function

$$f(x_{\nu(1)};\Theta) \ge f(x_{\nu(2)};\Theta) \ge \dots \ge f(x_{\nu(n)};\Theta)$$

In our experiments h=n/10

Validation : Methods

Four similar approaches :

- A. Proposed algorithm
- B. As A. but replacing mEM with the classical EM
- C. No MeS regions, each voxel is independently classified with the mEM.
- D. As C. but replacing mEM with the classical EM

Validation: Data

Synthetic images (T1-w, T2-w and PD-w)

- MS brain with moderate lesion load from Brainweb
- 3% noise (n)
- 0%, 20% and 40% of inhomogeneity (rf)
- Real images (T1-w, T2-w and PD-w)

7 patients

- Denoised, inhomogeneity correction, normalized in the stereotaxic space, Skull-stripped.
- Lesions were manually segmented by an expert.

	BW n3rf0	BW n3rf20	BW n3rf40	Average Real
D	0,79	0.80	0.78	-
С	0,72	0.77	0.41	0.52 ± 0.07
В	$0,\!87$	0.84	0.79	-
Α	$0,\!87$	0.85	0.63	0.55 ± 0.05

Brainweb noise 3% and 0% inhomogeneity:

- Rousseau et al., ISBI'08: 0.63
- Freifeld et al., ISBI' 07: 0.77
- Van-Leemput, TMI'01: 0.80
- $\bigcirc \text{ Our method:} \qquad 0.87$

Example of classification with mEM vs. classical EM

T2-w

D. EM

C. mEM

B. EMMeS

A. REMMeS

Conclusions

Presented new method combining global and local information

- Importance of robust Expectation-Maximization
- MeS will keep the information of the contours

Future works:

- Reduce the execution time
- Automatic adjustement MeS parameters
- Improve validation (more experts, more methods)

Conclusions

Thank you very much for your attention

Supported by Arsep